
Available online at www.sciencedirect.com
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 51 (2008) 4583–4588
Technical Note

A note on methods for analysis of flow through microchannels

G. Chakraborty *

Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721 302, India

Received 30 May 2007; received in revised form 4 October 2007
Available online 20 April 2008
Abstract

The flow problem within a straight microchannel of arbitrary cross section is analyzed. Exact analytical solutions for flow profile of a
channel flow with no-slip boundary conditions have been obtained in literature only for simple geometry of channel section. In this
paper, a number of problems with more complicated geometries are solved either exactly or approximately. Three general solution meth-
ods are discussed, namely, complex function analysis, membrane vibration analogy and variational method. The usefulness of each
method is justified with the help of examples.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Microfluidics has become an active field of research fol-
lowing development of micro devices like micro sensors,
micro mixers which find application in various fields of sci-
ence and engineering [1]. The flow problem within a
straight microchannel has been and still is a subject of
research because in the micro level the flow shows signifi-
cant deviation from that within a macrochannel. In the lit-
erature, the problem has been analytically solved only for a
few simple cross sectional geometries. The geometry of a
microchannel can, however, be complicated due to manu-
facturing restrictions. For example, the cross section may
have Gaussian profile during laser ablation in the surface
of polymer PMMA, the sidewalls of a rectangular channel
may have wall slope etc. The aim of this paper is to describe
various methods of analysis of fluid flow in a straight
microchannel of arbitrary cross section. As will be shown,
great many cases can be analyzed.

Three analytical methods are described in this paper. In
the first method, functions of a complex variable are effec-
tively used, whereas, the second method exploits the anal-
ogy of the problem with membrane vibration. In the
third method, a variational formulation of the problem is
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given that can often aid in approximately calculating the
velocity profile within a channel of arbitrary cross section.

In this paper, it is assumed that the pressure driven flow
in microchannel is incompressible viscous flow governed by
Navier–Stokes equation, where inertial forces can be
neglected. No-slip boundary condition is assumed though
for very narrow channels this boundary condition may
not hold [2–4]. It is to be mentioned that although the anal-
ysis has been carried out for microchannels, same flow
equations appear as well in macrochannels if the linear flow
is assumed to be steady, fully developed and laminar [5].

2. Problem statement

Consider viscous incompressible flow within a straight
microchannel of uniform cross section. The steady flow
velocity u(y, z) along axial direction is governed by the fol-
lowing equation

l
o2u
oy2
þ o2u

oz2

� �
¼ dp

dx
; ð1Þ

where dp
dx is the constant pressure gradient along the length

axis x. The y- and z-axes are orthogonal to the length axis
and x–y–z form a right handed co-ordinate system. No-slip
condition at the boundary is given as

uðy; zÞ ¼ 0 at uðy; zÞ ¼ 0; ð2Þ
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Fig. 1. Channel cross section made by two intersecting circles.
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or
ou
os
¼ 0 along uðy; zÞ ¼ 0; ð3Þ

where s is the length measured along the boundary repre-
sented as u(y,z) = 0. The boundary curve is assumed to
be rectifiable.

So far, the exact velocity profile has been obtained for a
limited number of cases, e.g., flow through circular or ellip-
tical pipes, channel with rectangular cross section [6]. How-
ever, the form of the mathematical problem appears in
solid mechanics, for example, the problem of torsion of a
shaft with non-circular cross section [7], deflection of mem-
brane under constant load. If, analogy with physical prob-
lems are considered then a number of problems can be
solved either exactly or approximately. Three solution
methods are discussed below.

3. Closed form solution using complex functions

In this section, an exact analytical solution technique
using complex function analysis is given. The solution of
Eq. (1) can be given as

uðy; zÞ ¼ 1

4l
dp
dx

� �
ðy2 þ z2Þ þ u1ðy; zÞ; ð4Þ

where the function u1(y,z) satisfies the following equation

o
2u1

oy2
þ o

2u1

oz2
¼ 0: ð5Þ

It is well known that complex functional analysis can be
used to solve Eq. (5). In fact, the solution is either the real
part or the imaginary part of an analytic function f(y + iz)
where i ¼

ffiffiffiffiffiffiffi
�1
p

. If the function f is chosen in such a way
that u(y,z) vanishes at the boundary, i.e., Eqs. (2) or (3)
is satisfied then the corresponding u(y,z) is the solution of
the original problem. The method is explained with a few
examples.

Example 1. To find the velocity profile of flow within a
channel of circular cross section whose boundary is given
by u(y,z) = y2 + z2 � a2 = 0, the complex function
f(y + iz) is taken as a constant, say C. If C ¼ � 1

4l
dp
dx

� �
a2,

then the flow profile becomes

uðy; zÞ ¼ 1

4l
dp
dx

� �
ðy2 þ z2 � a2Þ ð6Þ

or in polar coordinate uðy; zÞ ¼ 1
4l

dp
dx

� �
ðr2 � a2Þ. This is the

solution of the given problem as it satisfies the boundary
condition.

Example 2. In this example the cross section is assumed to
be in the form of an equilateral triangle. Let the sides of the
triangle are represented as

y �
ffiffiffi
3
p

z� 2

3
a ¼ 0; ð7Þ

y þ
ffiffiffi
3
p

z� 2

3
a ¼ 0 ð8Þ
and

y þ 1

3
a ¼ 0: ð9Þ

In this problem assume f(n) = an3 + b where n = y + iz
with a, b as arbitrary constants. Taking the real part of f

as u1(y,z), one gets,

u1ðy; zÞ ¼ aðy3 � 3yz2Þ þ b; ð10Þ

yielding

uðy; zÞ ¼ 1

2l
dp
dx

� �
1

2
ðy2 þ z2Þ � 1

2a
ðy3 � 3yz2Þ þ b

	 

; ð11Þ

where a ¼ � 1
4l

dp
dx

� �
1
a and b ¼ 1

2l
dp
dx

� �
b. For the given prob-

lem setting b ¼ � 2
27

a2, one finally gets

u¼� 1

4l
1

a
dp
dx

� �
y�

ffiffiffi
3
p

z� 2

3
a

� �
yþ

ffiffiffi
3
p

z� 2

3
a

� �
yþ 1

3
a

� �
:

ð12Þ
Eq. (12) is seen to produce the exact solution of the prob-
lem as it vanishes at the boundaries represented by Eqs.
(7)–(9).

Example 3. Consider a channel with cross section shown in
Fig. 1. The section is made of two circular arcs, one of a
circle of radius bwith origin at center and the other of circle
of radius a with origin at (a, 0). In order to obtain flow pro-
file the use of polar co-ordinates is most effective. The com-
plex function is taken as f ðnÞ ¼ Anþ B

n þ C, where A, B
and C are constants. Taking the real part of f one gets
the solution of Eq. (5) as

u1ðr; hÞ ¼ Ar cos hþ B
r

cos hþ C; ð13Þ

where r2 = y2 + z2 and tanh = z/y. For the given problem

choose A ¼ � 1
4l

dp
dx

� �
;B ¼ 1

4l
dp
dx

� �
2b2a and C ¼ � 1

4l
dp
dx

� �
b2.

The flow profile then becomes
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u ¼ 1

4l
dp
dx

� �
r2 � b2 � 2ar cos hþ 2ab2

r
cos h

	 


¼ 1

4l
dp
dx

� �
ðr2 � b2Þ 1� 2a

r
cos h

� �
ð14Þ

which happens to be exact solution of the flow problem
since it vanishes at the boundaries r2 � b2 = 0 and
r = 2a cosh.

It may be mentioned that similar mathematical problem
arises in calculation of shear stress upon application of tor-
que on a straight elastic shaft of arbitrary cross section.
The solid mechanics problem, named after Saint-Venant
[8], has been analyzed by various researchers. The solutions
for different complicated cross sections have been obtained
[9,10]. In microfluidics most of the problems are of theoret-
ical interest only since the boundaries are too complicated
to appear in reality.

From the examples given above it is seen that although
the complex functional analysis is capable of providing
exact solutions of many problems the efficacy of the
method relies on suitable choice of the complex function
f(y + iz) for a given boundary. Considering this difficulty,
the following method, inspired by the analogy of transverse
vibration problem of a taut membrane is proposed.

4. Solution in infinite series form

In this section the analogy between the flow problem
and the problem of vibration of a taut membrane is
exploited to obtain solution in an infinite series form. Con-
sider free transverse vibration of a membrane having uni-
form unit tension in all sides and unit thickness and
material density. The equation of motion is given by [11]

o
2w
ot2
� o

2w
oy2
þ o

2w
oz2

� �
¼ 0; ð15Þ

where w is the transverse deflection of any point within the
membrane. The deflection w vanishes at the boundary. For
free vibration with frequency, x, the response is assumed as
w(y,z,t) = W(y,z) cosxt and substituted into Eq. (15) to get

o
2W
oy2
þ o

2W
oz2

� �
¼ �x2W ðy; zÞ: ð16Þ

The solution together with the boundary conditions yield
different mode shapes. The normal modes possess orthogo-
nal property [11], that is, for the mth and nth mode shapes
Wm(y,z) and Wn(y,z), the following relationship exists:Z

W mðy; zÞW nðy; zÞdy dz ¼ 0 if m 6¼ n: ð17Þ

Further, the normal modes form a complete set in the sense
that any function f(y,z) satisfying the boundary conditions
can be expressed in terms of the normal modes as follows:

f ðy; zÞ ¼
X1
n¼1

anW nðy; zÞ: ð18Þ
The constants an’s can be obtained using the orthogonality
relation as

an ¼
R

f ðy; zÞW nðy; zÞdy dzR
W 2

n dy dz
: ð19Þ

Now returning to the present flow problem, the fluid flow
profile can be obtained in two steps. In the first step, the
eigenmodes for the given cross section are calculated using
the membrane analogy. In the second step, the true flow
profile is calculated as summation of the normal modes
whose contributions are obtained from the flow equation.
Two examples are given below.

Example 4. Consider a rectangular channel with dimen-
sions of 2a and 2b along y- and z-axes, respectively. Taking
the origin at the center of cross section the normal modes
of the rectangular membrane can easily be shown to be the
following [11]:

W m;nðy; zÞ ¼ cos
2mþ 1

2a

� �
py cos

2nþ 1

2b

� �
pz ð20Þ

and the corresponding natural frequency is

xm;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

2a

� �2

þ 2nþ 1

2b

� �2
s

p: ð21Þ

The flow profile in the rectangular channel can be written
as

uðy; zÞ ¼
X1

m;n¼1

am;nW m;nðy; zÞ: ð22Þ

Substituting Eq. (22) into Eq. (1) one gets

X1
m;n¼1

am;n
o

2W m;n

oy2
þ o

2W m;n

oz2

� �
¼ 1

l
dp
dx
: ð23Þ

The above expression can further be simplified using Eq.
(16) asX1
m;n¼1

am;n �x2
m;nW m;n

� �
¼ 1

l
dp
dx
: ð24Þ

The unknown constants are obtained using orthogonality
relation (see Eq. (17)) as

am;n ¼ �
1

l
dp
dx

� � R
W m;n dy dz

x2
m;n

R
W 2

m;n dy dz
ð25Þ

or finally as

am;n ¼ �
16

ð2mþ 1Þð2nþ 1Þp2x2
m;n

1

l
dp
dx

� �
sin

2mþ 1

2

� �

� p sin
2nþ 1

2

� �
p ð26Þ

or as

am;n ¼ �
16

ð2mþ 1Þð2nþ 1Þp2x2
m;n

1

l
dp
dx

� �
ð�1Þmð�1Þn:

ð27Þ
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The same flow problem has been solved in more direct
manner [6] and the solution is given in the following
form:

uðy; zÞ ¼ � 16a2

p3

1

l
dp
dx

� �X1
n¼0

1

ð2nþ 1Þ3

�ð�1Þn 1�
cosh 2nþ1

2a

� �
pz

cosh 2nþ1
2a

� �
pb

" #
cos

2nþ 1

2a

� �
py:

ð28Þ

Since,

1�
cosh 2nþ1

2a

� �
pz

cosh 2nþ1
2a

� �
pb

" #
¼
X1
m¼0

am cos
2mþ 1

2b

� �
pz; ð29Þ

where a0ms can be easily found out as

am ¼ ð�1Þm 2

s
ðr=aÞ2

ðr=aÞ2 þ ðs=bÞ2
ð30Þ

with r ¼ 2nþ1
2

p and s ¼ 2mþ1
2

p, the expression (28) can be
written in the form given by Eq. (27). One may notice that
the solution given by mode superposition method is more
symmetric than that found in literature.

Example 5. Consider flow through a channel of semi-circu-
lar cross section with radius a. The corresponding mem-
brane problem can be solved in polar co-ordinate system.
The eigenvalue problem can be written as

�x2W ðr; hÞ ¼ o2W
or2
þ 1

r
o2W
or
þ 1

r2

o2W

oh2
: ð31Þ

For semi-circle we substitute W(r,h) = R(r)cos (2n + 1)h,
(the sinusoidal terms are not included as the flow is sym-
metric about h = 0) that yields the following equation

d2R
dr2
þ 1

r
dR
dr
þ x2 � ð2nþ 1Þ2

r2

 !
R ¼ 0; ð32Þ

where the angle is measured from the plane of symmetry.
Define a new variable ~r ¼ xr. The above equation becomes

~r2 d2R
d~r2
þ ~r

dR
d~r
þ ð~r2 � ð2nþ 1Þ2ÞR ¼ 0: ð33Þ

The solution can be written in the following form

Rð~rÞ ¼ C1J 2nþ1ð~rÞ þ C2Y 2nþ1ð~rÞ; ð34Þ

where J2n+1 and Y2n+1 are the Bessel’s function of the first
and second kind, respectively. Since the value of R vanishes
at the origin one has C2 = 0 (since Y2n+1(0) ?1). Other
boundary condition R(ax) = 0 is satisfied if

J 2nþ1ðaxÞ ¼ 0: ð35Þ

The solution of Eq. (35) can be obtained numerically. It is
known that for this problem countable infinite solutions
(say, k1, k2, . . . km,. . .) exist so that
xm;n ¼
km

a
ðm ¼ 1; 2; 3 . . .Þ: ð36Þ

Thus the mode shapes of the semicircular membrane are gi-
ven as

ðW m;nðr; hÞ ¼ J 2nþ1ðxm;nrÞ cosð2nþ 1Þh;
ðm ¼ 1; 2; 3 . . . ; n ¼ 1; 2; 3 . . .Þ: ð37Þ

The modes are orthogonal, that is,Z
W m;nðr; hÞW k;lðr; hÞr dr dh ¼ 0; m 6¼ k; n 6¼ l: ð38Þ

This can be easily proved because the cosine functions are
orthogonal and the Bessel’s functions have the following
property [12]Z a

0

J nðxmnrÞJ nðxknrÞr dr dh ¼ 0 m 6¼ k:

The original flow problem can be stated in polar co-ordi-
nates as

o2W
or2
þ 1

r
o2W
or
þ 1

r2

o2W

oh2
¼ 1

l
dp
dx

� �
: ð39Þ

Assume W ðr; hÞ ¼
P1

m;n¼1amnW m;nðr; hÞ. From the above
analysis, using Eq. (31), one gets the following equation

1

l
dp
dx

� �
¼ �

X1
m;n¼1

amnx
2
mnW m;nðr; hÞ ð40Þ

which after applying the orthogonality relations yields,

amn ¼ �
1

l
dp
dx

� �
1

x2
mn

R
W m;nr dr dhR
W 2

m;nr dr dh
: ð41Þ

This completes the solution of the problem. It may be
noted that the same method can be used for a cross section
in the form of a sector of a circle with sector angle 2a. In
this case, the assumed solution is W ðr; hÞ ¼ RðrÞ
cos ð2nþ1Þph

2a and the solution involves Bessel functions of or-
der m ¼ ð2nþ1Þp

2a .
5. Variational method

The analytical closed form and infinite series form of
solution of a given flow problem may not be possible if
the channel cross section is very complicated. In those
cases, approximate solutions are to be sought. In this sec-
tion, a variational formulation of the flow problem is given
that can be used to obtain approximate flow profile for any
channel. It may be seen that velocity profile is obtained by
minimizing the following functional:

J ½u� ¼ t
Z

l
2

ou
oy

� �2

þ ou
oz

� �2
" #

þ u
dp
dx

� �( )
dA; ð42Þ

where u(y,z) is a function that satisfies the essential bound-
ary condition, i.e., u(y,z) = 0 at the boundary. The func-
tional attains optimal value when Eq. (1) is satisfied. In
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fact the condition of optimality for any function that satis-
fies the boundary condition is

dJ ½u� ¼ �
Z

l
o2u
oy2
þ o2u

oz2

	 

� dp

dx

� �� �
duda ¼ 0; ð43Þ

for all possible variation du. That occurs if and only if

l
o

2u
oy2
þ o

2u
oz2

� �
¼ dp

dx
: ð44Þ

Many problems can be solved approximately by choosing
appropriate trial functions u(y,z) that satisfy the boundary
condition and minimizing the functional (42). Two exam-
ples are given below.

Example 6. Consider the problem of flow through a
channel of elliptical cross section whose boundary is given

as uðy; zÞ ¼ y2

a2 þ z2

b2 � 1 ¼ 0. Let the trial function be

uðy; zÞ ¼ m y2

a2 þ z2

b2 � 1
� �

. The unknown quantity m can be

obtained if J[u] is minimized with respect to m. Clearly,
J ½u� ¼
Z

2lm2 y2

a4
þ z2

b4

� �
þ m

dp
dx

y2

a2
þ z2

b2
� 1

� �	 

dy dz;

ð45Þ

¼ lm2

2

b
a
þ a

b

� �
pþ dp

dx

� �
m � � pab

2

� �
: ð46Þ

The value of m is obtained by minimizing J. Hence,
dJ
dm ¼ 0) m ¼ 1

l
dp
dx

a2b2

2ða2þb2Þ. Thus the flow profile becomes

uðy; zÞ ¼ a2b2

2ða2 þ b2Þ
1

l
dp
dx

� �
y2

a2
þ z2

b2
� 1

� �
: ð47Þ

In this case, the result obtained by approximate method is
also exact because the trial function satisfies the boundary
condition as well as the governing equation.

Example 7. Consider a channel whose boundary is defined
in polar co-ordinates as r = a(1 + ecosnh). To obtain the
approximate flow profile for this problem the variational
functional (42) is formulated in terms of polar co-ordinates
as

J ½u� ¼
I Z

l
2

ou
or

� �2

þ 1

r
ou
oh

� �2
" #

þ u
dp
dx

� �( )
r dr dh:

ð48Þ
The approximate solution can be taken as

u ¼ mðr þ aÞ r
1þ e cos nh

� a
� �

; ð49Þ

where from the unknown constant can be calculated by
substituting Eq. (49) into Eq. (48) and minimizing the inte-
gral with respect to m. This gives

m ¼ 1

l
dp
dx

� �
C1

C2

; ð50Þ
where

C1 ¼
1

12

Z 2p

0

1þ e cos nhð Þ3 þ 2 1þ e cos nhð Þ2
h i

dh ð51Þ

and

C2 ¼
Z 2p

0

1

6
1þ e cos nhð Þ2 þ 1

3
1þ e cos nhð Þ þ 1

2

	 

dh

þ
Z 2p

0

n2e2 sin2 nh
1

4
1þ e cos nhð Þ2

�	

þ 2

3
1þ e cos nhð Þ þ 1

2

�

dh: ð52Þ

In order to improve the accuracy of the result with varia-
tional method, the assumed flow profile can be approxi-
mated in a series form as

u ¼
X1
k¼1

mk/kðy; zÞ; ð53Þ

where the trial functions /k(y,z) vanish at the boundaries.
The unknown constants, mk’s are obtained by substituting
Eq. (53) in Eq. (48) and minimizing the functional using
oJðm1;m2;...Þ

omi
¼ 0; ði ¼ 1; 2; . . .Þ. For example, the trial function

in Example 7 can be written in series form as

u ¼ ðr þ aÞ r
1þ e cos nh

� a
� �X1

k;l¼0

mklrk cos lh;

where the unknown constants are obtained by minimizing
the integral (48).
6. Conclusions

Steady viscous flow within a straight microchannel of
arbitrary cross section is analyzed. Three methods have
been discussed to obtain exact and approximate flow pro-
file. The first method uses complex functional analysis
whereas the second method exploits analogy with the prob-
lem of transverse vibration of a membrane. In the third
method a variational formulation is given whereby approx-
imate flow velocity is easily obtained using optimization
technique.
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